
Financial Econometrics A
February 17, 2020
SOLUTION KEY

Please note there is a total of 10 questions that you should provide answers
to. That is, 5 questions under Question A, and 5 under Question B.

Question A:

Consider the model for xt ∈ R (with t = 1, 2, ..., T ) given by

xt = µ+ εt, εt = σtzt,

with zt i.i.d.N(0, 1), x0 = 0 and

σ2t = ω + αx2t−1.

The parameters satisfy µ ∈ R, ω > 0 and α ≥ 0.

Question A.1: Derive a condition under which xt is weakly mixing with
Ex2t <∞.

Solution: xt is a Markov chain, with strictly positive and continuous
transition density, and we use δ (x) = 1 + x2 :

E (δ (xt) |xt−1 = x) = 1 + E
(
(µ+ εt)

2 |xt−1 = x
)

= 1 + µ2 +
(
1 + αx2

)
Ez2t

and we see that α < 1 is suffi cient.

Question A.2: With θ = (µ, ω, α)′ the likelihood function is given by

L (θ) = − 1

2T

T∑
t=1

(
log σ2t (θ) +

(xt − µ)2

σ2t (θ)

)
,

with σ2t (θ) = ω + αx2t−1. Show that if α0 < 1, then with θ0 = (µ0, ω0, α0)
′

the true parameter value,

√
T∂L (θ0) /∂µ

D→ N (0, ξ) ξ = E

(
xt − µ0

ω0 + α0x2t−1

)2
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Solution:
√
T∂L (θ0) /∂µ =

1√
T

T∑
t=1

xt − µ0
ω0 + α0x2t−1

and, using that E[(xt − µ0)/(ω0 + α0x
2
t−1)|xt−1] = 0, we can apply the CLT

for weakly mixing processes if

E

(
xt − µ0

ω0 + α0x2t−1

)2
<∞.

As

E

(
xt − µ0

ω0 + α0x2t−1

)2
< E (xt − µ0)2 /ω0

this holds if Ex2t <∞ or α0 < 1.

Question A.3: Show that if xt is weakly mixing with α0 > 0, then with
θ0 = (µ0, ω0, α0)

′ the true parameter value,

√
T∂L (θ0) /∂α

D→ N (0, β) β =
1

2
E

(
x2t−1

ω0 + α0x2t−1

)2

Solution:

√
T∂L (θ0) /∂α =

1

2
√
T

T∑
t=1

(
z2t − 1

) x2t−1
ω0 + α0x2t−1

and we can apply the CLT for weakly mixing processes if

E

((
z2t − 1

) x2t−1
ω0 + α0x2t−1

)2
<∞.

As E (z2t − 1)
2
= 2, and

E

(
x2t−1

ω0 + α0x2t−1

)2
< 1/α20

the result holds if α0 > 0.

Question A.4: We may conclude that if 0 < α0 < 1 then asymptotic
normality holds for θ̂. Argue that the limiting distribution of the LR statistic
for the hypothesis that µ = 0 is χ2.
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Solution: This holds by the asymptotic normality of θ̂ using standard
expansions of the LR statistic.
Question A.5: Now consider testing the hypothesis that α = 0. In this
case the asymptotic distribution of the LR statistic is "1

2
χ2". Explain why -

and explain how this is related to Questions A.2 and A.3.

Solution: As α = 0 is a boundary point the standard theory breaks
down - and the "1

2
χ2" holds since there are no boundary issues for ω and µ.

Moreover, in Question A.3 the asymptotic normality argument breaks down
as α0 > 0 does not hold - and we see that Ex4t <∞ is needed (which always
holds, since xt is Gaussian if α0 = 0).
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Question B:

Suppose that the logarithm of the price of a share of stock is given by

p(t) = p(0) + µt+ σW (t), t ∈ [0, T ], (B.1)

where p(0) ∈ R is some fixed initial value, µ ∈ R and σ > 0 are constants,
and W (t) is a Brownian motion.

Recall here that the Brownian motion W (t) has the properties

1. W (0) = 0.

2. W has independent increments, i.e. if 0 ≤ r < s ≤ t < u, then

W (u)−W (t) and W (s)−W (r)

are independent.

3. The increments are normally distributed, i.e.

W (t)−W (s) ∼ N(0, t− s)

for all 0 ≤ s ≤ t.

Suppose that we have observed the price p(t) at n+ 1 equidistant points

0 = t0 < t1 < . . . < tn = T,

with
ti =

i

n
T, i = 0, ..., n.

Based on these points we obtain n log-returns given by

r(ti) = p(ti)− p(ti−1), i = 1, ..., n.

Question B.1: Argue that r(ti) is normally distributed, i.e. show that

r(ti) ∼ N

(
µ
T

n
, σ2

T

n

)
.

Show that
cov(r(ti), r(ti−1)) = 0.
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Solution: The properties follow directly from the definition of r(ti) and
the properties of the Brownian motion. Derivations should be included.

Question B.2: We now seek to estimate the model parameters (µ, σ2) based
on maximum likelihood. Given the n log-returns, the log-likelihood function
is (up to a constant and a scaling factor)

Ln(µ, σ
2) =

n∑
i=1

{
− log(σ2T

n
)−

[
r(ti)− µTn

]2
σ2 T

n

}
.

Let µ̂ denote the maximum likelihood estimator of µ.
Show that

µ̂ =
1

T

n∑
i=1

r(ti) =
1

T
[p(T )− p(0)] .

Argue that the sampling frequency of the log-returns over the interval [0, T ]
does not have any influence on the estimate of µ.

Solution: By solving the F.O.C. for maximization of Ln(µ, σ2), that is
solving

∂Ln(µ, σ
2)

∂µ
= 0

for µ, yields the MLE

µ̂ =
1

T

n∑
i=1

r(ti).

Derivations should be included. Moreover,

n∑
i=1

r(ti) =

n∑
i=1

p(ti)− p(ti−1) = p(tn)− p(t0) = p(T )− p(0),

by the definition of ti. Hence, the MLE does not depend on n, i.e. the
number of observations within the interval [0, T ].

Question B.3: Assume now that T = 1, such that we have n observations
of the log-returns over the time interval [0, 1], which you may think of as the
time interval over one trading day. Then the maximum likelihood estimator
for σ2 is given by

σ̂2 =

n∑
i=1

[
r(ti)−

1

n

n∑
i=1

r(ti)

]2
.
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Use that r(ti) =
µ
n
+ σ√

n
zi, with zi ∼ i.i.d.N(0, 1) in order to show that

1

n

n∑
i=1

r(ti)
p→ 0 as n→∞.

Explain briefly how σ̂2 is related to the Realized Volatility.

Solution: We have, that

1

n

n∑
i=1

r(ti) =
1

n

n∑
i=1

(
µ

n
+

σ√
n
zi

)
=
µ

n
+

σ√
n

1

n

n∑
i=1

zi.

For the first term, µ
n
→ 0 as n → ∞. For the second term, 1

n

∑n
i=1 zi

p→
E(zi) = 0 by the LLN for i.i.d. processes. We conclude that 1

n

∑n
i=1 r(ti)

p→
0 as n→∞.
The realized volatility (over the interval [0, 1]) is

n∑
i=1

[r(ti)]
2 .

Hence the realized volatility is obtained from σ̂2 =
∑n

i=1

[
r(ti)− 1

n

∑n
i=1 r(ti)

]2
by substiuting in the probability limit of 1

n

∑n
i=1 r(ti) (that is equal to zero).

Question B.4: Assume that T is some positive integer (T ∈ N), and that we
have n = T observations of the returns, that is we have a sample (r(t))t=1,...T
with r(t) = p(t)− p(t− 1). Let

γ̂T =
1

T

T∑
t=1

r(t),

and argue that as T →∞,
√
T (γ̂T − µ)

d→ N(0, σ2).

Solution: Using the properties of the BM, we have that r(t) ∼i.i.d.N(µ, σ2).
By a CLT for i.i.d. processes, we have that

√
T (γ̂T − µ)

d→ N(0, σ2)
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Question B.5: The following figure shows the daily log-returns of the S&P
500 index for the period January 4, 2010 to September 17, 2015.
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Discuss briefly whether the model in (B.1) is a reasonable model for the daily
log returns of the S&P 500 index.

Solution: The model in (B.1) suggests that daily log-returns r(t) = p(t)−
p(t− 1), t = 1, 2, ..., should be given by

µ+ σ(W (t)−W (t− 1)).

By the properties of the Brownian motion, we would have that r(t) ∼ i.i.d.N(µ, σ2).
I.e. the returns would be independent and Gaussian with constant mean and
variance. By visual inspection of the series, it appears that the returns are
heteroskedastic, and we know from the lectures that the returns are uncon-
ditionally heavy-tailed (i.e. non-Gaussian). This suggests that the model is
not appropriate for modelling the main features of the daily return series.
Ideally, a few derivations should be included.
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